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LE’ITER TO THE EDITOR 

Equilibrium states of the spin glass on a Bethe lattice 

R C Dewar and P Mottishawt 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 21 September 1988 

Abstract. The existence of many equilibrium states of the spin glass on a Bethe lattice at 
low temperatures is confirmed numerically, directly on the lattice. Following a method 
due to Nemoto and Takayama, approximate solutions of the exact equations for the Bethe 
lattice site magnetisations { m , }  are found by minimising the norm IVFI = [Z,  (aF/dm,)*]’” 
where F ( { m , } )  is the free energy. In order to examine the stability of solutions on the 
Bethe lattice using the Hessian a2F/am, am,, it is necessary to connect up boundary sites. 
Evidence is presented for the bifurcation of equilibrium states with decreasing temperature. 

In the last decade work on the infinite-range SK model (Sherrington and Kirkpatrick 
1975) of spin glasses has greatly clarified the nature of the spin-glass phase. Within 
the framework of the replica method (Parisi 1979a, b, 1980a, b, c) a picture has emerged 
of a large number of equilibrium states organised in phase space in an ultrametric 
structure (Mtzard et a1 1984a, b). Work directly confirming the existence of these pure 
states-by finding solutions of the self-consistent TAP equations (Thouless et a1 1977) 
for the site magnetisations {m,}  for a given bond sample {J,}-was initiated by Bray 
and Moore (1979) and extended more recently by Nemoto and Takayama (1985,1986) 
and Nemoto (1987). 

In this letter we study the $finite-range spin glass on a Bethe lattice (Bowman and 
Levin 1982, Thouless 1986, Mottishaw 1987). Even though this model is still at the 
mean-field level, one hopes it is more realistic than the S K  model (or at least provides 
an independent check on the mean-field behaviour). In a recent letter (Mottishaw 
1987) it was shown, using the replica method, that for the spin glass on a Bethe lattice 
there is a replica symmetry breaking spin-glass transition. Close to the transition, the 
nature of the spin-glass phase, as described by the distribution P (  q )  of overlaps between 
equilibrium states (see De Dominicis and Young 1983, Parisi 1983), was shown to be 
identical to that for the S K  model. 

By adopting the numerical method applied by Nemoto and Takayama to the solution 
of the TAP equations for the S K  model, we confirm the existence of many equilibrium 
states directly on the Bethe lattice by finding approximate solutions of the exact 
equations due to Bowman and Levin (1982)-hereafter referred to as the BL equations- 
for the Bethe lattice site magnetisations {m,}  for a given bond sample { J , } .  Although 
at this preliminary stage the number of equilibrium states so generated is not large 
enough to explore P ( q )  and compare it with Mottishaw’s solution, or to address the 
question of ultrametricity, we are able to confirm that the scenario proposed by Mtzard 

t Present address: Hewlett Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 642,  UK. 

0305-4470/88/231135 +06$02.50 @ 1988 IOP Publishing Ltd L1135 



L1136 Letter to the Editor 

et a1 (1984a)-in which an infinite bifurcation of equilibrium states takes place as 
temperature decreases in the spin-glass phase-applies to the Bethe lattice. 

We consider the Hamiltonian 

in which ui=*l  are Ising spins at the sites of a Bethe lattice (figure l ) ,  and the 
coupling J, between nearest-neighbour sites ( 9 )  is chosen independently at random 
from the symmetric distribution p(J, )  =$[S(J, - J ) +  S ( J , + J ) ] .  We wish to study the 
equilibrium states of this system, each described by a set of site magnetisations { m i } ,  
i.e. mi = (ui). 

Figure 1. A subtree with branching factor K = 2, showing boundary sites ( a )  unconnected 
and ( 6 )  connected. In either case one may construct a tree from two such subtrees connected 
via a common central bond. In case ( a )  the result is a Cayley tree, whose central portion 
far from the boundary constitutes a Bethe lattice. In case ( b )  the result is physically 
equivalent to a Bethe lattice; all sites have the same number K + 1 = 3 of nearest neighbours 
as in the bulk of the Cayley tree. 

Bowman and Levin (1982) showed that for a given bond sample { J V }  the hierarchal 
tree structure of the Bethe lattice admits a set of exact equations (the BL equations) 
for the site magnetisations { m i } :  

i = l ,  ..., N. 
1-g  2 - r i j  

2( mi - gijmj) 

Here the sum is over the z nearest neighbours of site i, N is the number of sites in 
the lattice, p = 1/ kT, gij = tanh(PJ,), g2 = g i  and 

rij = [ ( 1 - g2)2 - 4g, ( mi - gumj ) ( mj - gumi)] (3) 

The BL equations for the spin glass on a Bethe lattice are analogues of the TAP equations 
for the SK model. In the limit of infinite z, the BL equations are identical to the TAP 
equations. Solutions of the BL equations define the spectrum of possible equilibrium 
states {mi}. To calculate the free energy F ( { m i } ) ,  one may take equation (2) in the 
form aF/ami =hi and then integrate. The Hessian matrix is given by d2F/dmiamj = 
ahi/amj. 
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Before discussing solutions of the B L  equations (2) we address the question of 
boundary sites (figure 1) .  Because boundary sites constitute a macroscopic fraction 
of the total number of sites N, the way they are connected turns out to be of crucial 
importance. For a Bethe lattice with branching factor K, our procedure is to (randomly) 
interconnect the boundary sites such that each one then has the same coordination 
number z = K + 1 as that of bulk sites (figure l (b)) .  In this way we naturally satisfy 
the physically sensible requirement that all sites are to be treated equivalently. Only 
then do we recover precisely the TAP equations in the limit z + CO. 

More important, leaving boundary sites ‘dangling’ (figure l ( a ) )  would give a Cayley 
tree upon which physics is quite different. For example, for a ferromagnetic system 
Eggarter (1974) has shown that there is no phase transition on the Cayley tree, but 
for the central region far from the boundary there is a phase transition at T = T, (where 
tanh(J/ kT,) = 1/ K )  in which a large number of sites cooperate to produce a magnetisa- 
tion in a negligibly small portion of the Cayley tree. Such a region, in which all sites 
are equivalent, corresponds to the Bethe lattice (see, e.g., Baxter 1982). Hence for 
instance, in the stability analysis of the paramagnetic state on a Cayley tree, the lowest 
eigenvalue A,,, of the Hessian d*F/dm,am, remains positive for all T >  0 (which we 
have confirmed numerically). In the corresponding stability analysis on a Bethe lattice, 
however, one cannot simply calculate the Hessian in the central region of a Cayley 
tree because the edge of this region will artificially introduce dangling boundary sites 
as at the boundary of the Cayley tree itself. Hence we still obtain A,,, > 0 for all T > 0 
and so the ferromagnetic transition at T, is not seen in this analysis (although it may 
be derived by other means (Baxter 1982)). 

However, when z =  K + l  on the boundary all sites are equivalent and one may 
easily show analytically for this system that A,,, becomes negative as T decreases 
through T,; only then does the Hessian matrix faithfully reflect the physical stability 
of equilibrium states on the Bethe lattice. We have confirmed numerically that when 
z = 1 on the boundary the same stability analysis of the paramagnetic solution applies 
in the spin glass below the Almeida-Thouless (AT) line in the ( h ,  T) plane. Since the 
stability analysis forms an important part of our work we have used connected boundary 
sites (figure l ( b ) ) .  

These considerations appear to question the validity of a previous method (Thouless 
1986) of generating equilibrium states { m l }  for the spin glass on the Bethe lattice, in 
which one sets up random fields on boundary sites of a Cayley tree, and then iterates 
shell-by-shell the exact equations equivalent to equation (2) for the effective fields {[,}, 
defined by m, = tanh(P5,). One looks for fixed-point solutions {&} well within the 
bulk, for which the distribution of effective fields P([) is invariant from shell to shell. 

In this procedure, the AT line is located as the line above which P ( [ )  = a([). The 
region below this line (the spin-glass phase) is characterised by a sensitivity of the 
solutions to boundary conditions and, consequently, by the existence of many fixed- 
point solutions for which P( [) is non-trivial. This is valid insofar as one then correctly 
locates the AT line but, in the light of the above remarks, we believe it is invalid as a 
procedure for generating the correct stable equilibrium states below this line. What 
one requires are self-consistent solutions { m l }  on the fully connected lattice with 
z = K + 1 everywhere. 

We now discuss solutions of the BL equations with z = K + 1 everywhere. In zero 
external field, the spin-glass transition occurs at a temperature Tg given by 
tanh(J/kT,) = 1 / a .  In what follows we have taken { h ,  =O}, J = 1 and K = 2 in 
equation (2) and have constructed a Bethe lattice from two subtrees (figure l (b))  
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connected by a central bond. (Boundary sites belonging to different subtrees may be 
connected.) We have been guided by previous work on the TAP equations. For the 
TAP equations Bray and Moore (1979) found that direct iteration hardly ever converged, 
and we find that the same is true for the BL equations. Therefore we have adopted a 
more efficient procedure first used by Nemoto and Takayama (1985) to generate 
approximate solutions to the TAP equations. 

This involves minimising the norm ( V F I  = [ X i  (aF/am,)*]''' with respect to {m,}, 
where F({mi}) is the free energy defined by integrating the BL equations. A standard 
NAG routine is used for the minimisation. As discussed by Nemoto and Takayama, 
there are two possibilities for the outcome of this procedure, according to whether it 
stops with (i) minlVFl= 0 or (ii) minlVFl> 0. In case (i), the configuration {mi} is an 
exact solution of the BL equations. In case (ii), the configuration { m i }  represents a 
turning point of F, i.e. the lowest eigenvalue Amin of the Hessian matrix a2F/amiamj 
is zero identically, but is not an exact solution of the BL equations. 

Following Nemoto and Takayama, in case (i) we have examined the N dependence 
of the lowest eigenvalue A m i n  of the Hessian (figure 2( a ) ) .  In case (ii) we have examined 
the N dependence of minlVFl (figure 2 ( b ) ) .  These numerical results are consistent 
with the limiting result that, as N + a3, A m i n  + 0 in case (i) and minlVFl+ 0 in case (ii), 
although this evidence is by no means conclusive. (Similar results for the SK model 
were reported by Nemoto and Takayama (1989.) In combination, these results imply 
that in the thermodynamic limit the minimising configurations {mi} represent equili- 
brium states (solutions of the BL equations) which are marginally stable ( A m i n  = 0). 

N N 

Figure 2. ( a )  A,,,>" plotted against N for exact solutions of the BL equations. Data are 
averaged over 20, 12 and 8 samples on lattices with N = 30, 62 and 126 respectively. ( b )  
minlVFl plotted against N for approximate solutions of the BL equations. Data are averaged 
over 100, 50, 30 and 15 samples on lattices with N = 30, 62, 126 and 254 respectively. 

With this procedure we have constructed a picture consistent with the existence of 
many equilibrium states below T. .  At T = 0.4Tg, for a particular bond sample on a 
lattice with N = 62 we generated 100 configurations which minimised IVFI, from which 
20 configurations were chosen with significant weight, i.e. they satisfied the condition 
wi = exp(-/3Fi)/Cj exp(-pF,) > where Fi is the free energy of the ith configur- 
ation. We then raised the temperature in steps of 0.02T'. and at each temperature new 
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equilibrium states were generated by using the equilibrium states at the previous 
temperature as inputs for the minimisation of IVFI. 

Figure 3 shows schematically how the equilibrium states evolve through phase 
space as the temperature is raised. A state evolves continuously in phase space with 
increasing temperature until at some particular temperature it jumps discontinuously, 
where a confluence of states may occur. All states eventually evolve to the paramagnetic 
state. Conversely, as temperature decreases, one may interpret this evolution as 
evidence of an infinite bifurcation of equilibrium states (MCzard et a1 1984a, b). In 
arriving at these conclusions, we have been guided by the paper of Nemoto and 
Takayama (1986) in which similar results were reported for the S K  model. 

In conclusion, using the method of Nemoto and Takayama to generate approximate 
solutions { m l }  of the B L  equations, we have presented numerical evidence for the 
existence of many equilibrium states of the spin glass on a Bethe lattice at low 
temperature. These states are marginally stable in the thermodynamic limit and undergo 
a sequence of phase transitions with decreasing temperature. 

In addition we have shown that, in order to examine the stability of solutions of 
the BL equations on a Bethe lattice, boundary sites must be interconnected. Note that 
our results for the fully connected lattice are consistent with the result (Mottishaw 
1987) that replica symmetry is broken in the spin-glass phase only if the effective fields 
on boundary sites are correlated. This latter result has also been confirmed by the 
recent Monte Carlo work of Lai and Goldschmidt (1989). 

We would like to thank P-Y Lai and Y Y Goldschmidt for sending us a preprint of 
their work. RCD would like to thank the University of London Computer Centre for 
Cray facilities. Financial support from the SERC is gratefully acknowledged. 
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Figure 3. Schematic diagram illustrating the phase-space evolution of equilibrium states 
with temperature. A horizontal line represents the continuous evolution of a particular 
state, a sloping line represents its discontinuous evolution, and the bold line represents 
the paramagnetic state. Details are given in the text. 
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